キラル液晶エラストマーのらせん軸配向制御 による光学ー力学機能フィルムの開発

○四方優輝,木村聖也,柳原 真樹,久野恭平,松本浩輔,堤治

立命館大学 生命科学部 応用化学科 Email: tsutsumi@sk.ritsumei.ac.jp

分子配向制御による機能性フィルムの創製

<u>分子配向制御による機能化</u>

分子配向制御により材料機能発現・向上が可能

キラルネマチック液晶がもつ光学機能

<u>らせん状配向</u>

$$\beta = P^{-1}c^{-1}$$

β: らせん誘起力 P: らせんピッチ c: キラル分子の濃度

<u>らせん軸配向制御による光学機能発現</u>

K. U. Jeong et al., ACS Nano 2016, 10, 9570.

I. Gvozdovskyy, et al., Opt. Express 2012, 20, 3499.

大面積かつ精密ならせん軸の一軸配向制御が鍵

キラルネマチック液晶エラストマー

H. Finkelmann, et al., Adv. Mater, 2001, 13, 1069.

伸長変形により, 膜厚が減少 らせんピッチが減少し, 反射色が変化

本研究

らせん軸配向制御による光学一力学機能フィルムの開発

<u>1. 異種材料積層によるエラストマーの高速応答の実現</u>

<u>2. らせん軸が面内配向制御されたエラストマーの作製</u>

積層型キラルネマチック液晶エラストマーの作製

1. 異種材料積層によるエラストマーの高速応答の実現

積層型エラストマーの応力ひずみ曲線

1. 積層型キラル液晶エラストマーによる高速応答の実現

高速応答性キラルネマチック液晶エラストマー

極めて高速な戻り速度(<1s)を実現 ひずみセンシングなどへの応用が期待される

1. 積層型キラル液晶エラストマーによる高速応答の実現

エラストマーの反射スペクトル測定

ひずみ増加に応じて反射ピーク波長が短波長シフト

1. 積層型キラル液晶エラストマーによる高速応答の実現

時間分解反射スペクトル測定

積層フィルムは完全弾性体のような挙動 内部のキラルネマチック液晶フィルムは粘弾性挙動

まとめ

- キラルネマチック液晶エラストマーが高速応答(<1s)
- ・ 積層された異種材料(PDMS)が内部のキラルネマチック 液晶エラストマーの力学特性を制御
- 分子設計を変えることなく自在な応答性を付与できる

2. らせん軸が面内配向制御されたエラストマーの作製

らせん軸の面内配向を制御できる傾斜光重合

<u>傾斜光重合</u>

非露光部/露光部の境界

遮光部/露光部の境界付近に 光強度勾配が形成

Y. Shikata, et al., Small Structures 2024 in press.

光強度勾配によりらせん軸の配向方向を規定できる

傾斜光重合によるキラル液晶エラストマーの創製

- ・面内一軸配向を制御したキラル液晶エラストマーの開発
- ・力学刺激により回折特性を制御できる
- ・異種材料積層により高速応答かつ可逆的変形を実現 13

2. らせん軸が面内配向制御されたエラストマーの作製

モノマー混合物の作製

相転移温度

Cooling Cry 25 N* LC 33 Iso

Cry: 結晶相 N* LC: キラルネマチック液晶相 Iso: 等方相 モノマー混合物のPOM画像 @30°C (λ = 550 nm)

14

2. らせん軸が面内配向制御されたエラストマーの作製

傾斜光重合によりらせん軸の面内一軸配向の形成

偏光顕微鏡観察

2. らせん軸が面内配向制御されたエラストマーの作製

ー軸延伸に伴う可逆的な回折角の変化

2. らせん軸が面内配向制御されたエラストマーの作製

まとめ

- ・傾斜光重合によりエラストマー内でらせん軸の 面内一軸配向制御
- ひずみ印加に伴い,回折機能が可逆的に変化
- フレキシブル回折格子への応用が可能

